

Production of lysine for feed supplements from shrimp waste using metabolically engineered *Vibrio natriegens*

ScampiLys

A joint project of Hanoi University of Science and Technology and TU Dresden

Presented by Prof. Thomas Walther

Concept of ScampiLys

Optimization of shrimp waste hydrolysis methods

Metabolic engineering of a lysine-producing strain

Summary and additional project outcomes

- Concept of ScampiLys
- Optimization of shrimp waste hydrolysis methods
- Metabolic engineering of a lysine-producing strain
- Summary and additional project outcomes

Shrimp production plays major role in Vietnamese Bioindustry

Total amount of shrimp produced: 1,000,000 t per year

Revenues: 32 Billion USD

Growth rate of market:

6 % per year

Sustainable growth supported by government programs

Large amounts of shrimp waste are produced

Total amount of shrimp waste produced: 350,000 t per year

Disposal generates environmental problems (not only in Vietnam)

Vietnamese government aims at reducing environmental cost of shrimp production

Current applications

Drying and milling -> shrimp meal -> replace fish meal in animal diets BUT: low added value

Chitosan extraction provides high added value but market is too small (20,000 t world wide)

http://www.intprocon.com/Shrimp-waste.html https://kimmyfarm.com/en/product/shrimp-waste-heads-and-shells-for-animal-feed https://www.newindianexpress.com/states/odisha/2018/jun/26/odisha-illegal-dumping-of-shrimp-waste-continues-unabated-in-port-town-1833828.html

Problems during (bio)chemical upgrading of shrimp waste

Shrimp waste composition:

- 50 % protein
- 25 % chitin
- 25 % minerals + other

Chitin is a very stable biopolymer

- -> Harsh hydrolysis conditions (high acid content)
- -> Causes high salt content in hydrolysis product (inhibits cell growth, waste disposal)

Hydrolysis products are

- N-acetylglucosamine (GlcNac, enzymatic hydrolysis)
- Glucosamine + acetate (GlcN, acid hydrolysis)

-> Microbial upgrading of these substrates difficult (not well studied)

Concept of ScampiLys

Optimization of shrimp waste hydrolysis methods Metabolic engineering of a lysine-producing strain

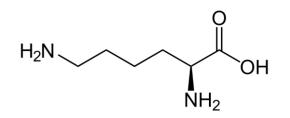
Summary and additional project outcomes

Concept of ScampiLys

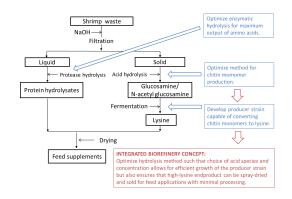
Development of an integrated **shrimp waste biorefinery**

Separate chitin from protein fraction

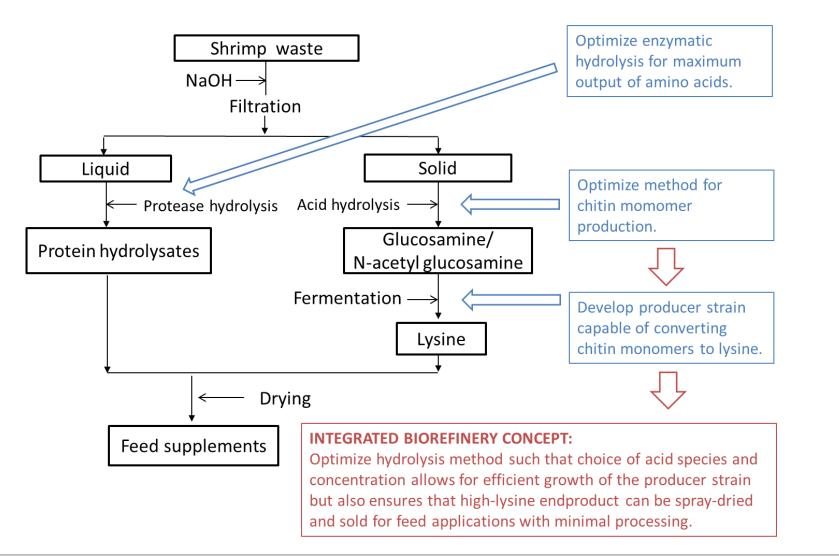
Optimize acid and enzymatic **hydrolysis methods** to produce chitin monomers

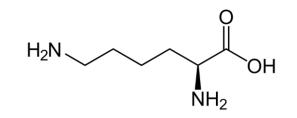

Use extremely fast-growing Vibrio natriegens for its

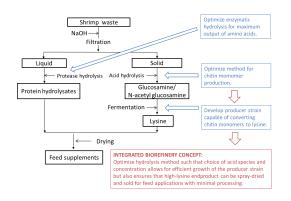
- High salt tolerance (more robust on salt-containing hydrolytic products)
- High growth rate on GlcNac, GlcN and acetate

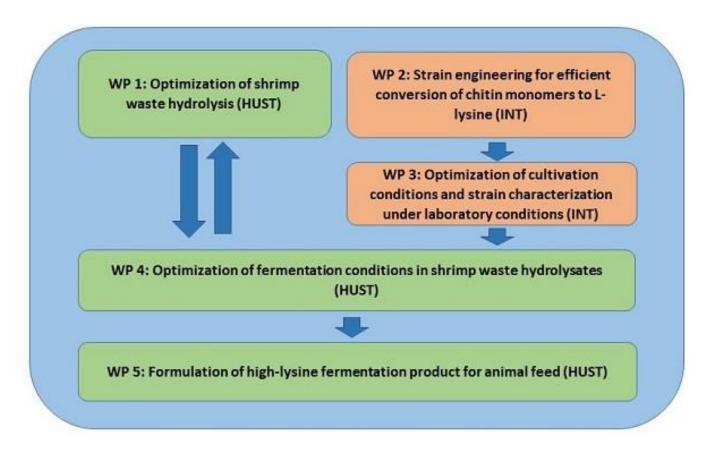

Construct lysine-overproducing *V. natriegens* strain by metabolic engineering

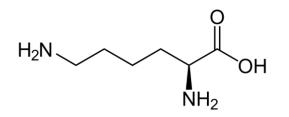
Fermentation product with high lysine content may be pooled with protein fraction to produce high-value feed product


Shrimp waste biorefinery

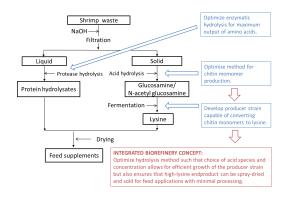



Concept of ScampiLys


Shrimp waste biorefinery



Concept of ScampiLys


Project outline

Shrimp waste biorefinery

INT

HUST

Concept of ScampiLys

Optimization of shrimp waste hydrolysis methods

- Metabolic engineering of a lysine-producing strain
- Summary and additional project outcomes

Strategy

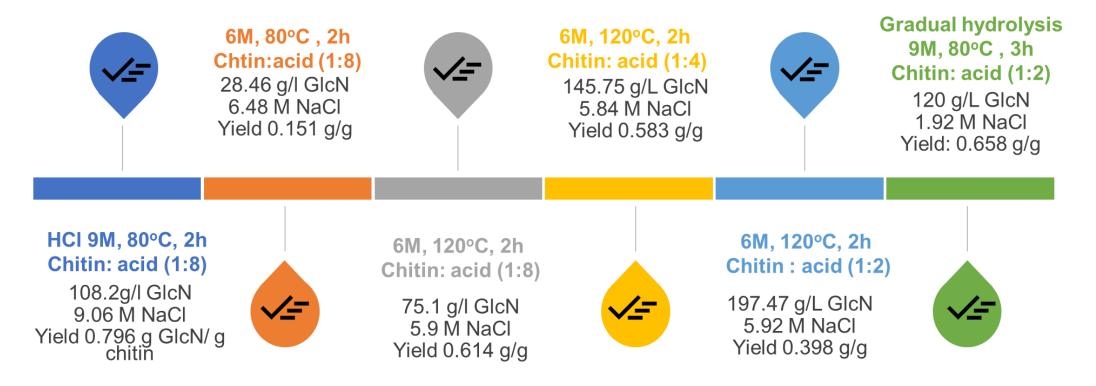
TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

OBJECTIVE: Obtain fermentable chitin hydrolysate

Optimize hydrolysis: Optimize method to reduce HCl (=salt) content while still obtaining high chitin monomer yield

Identify robust strain:

Look for strains that grow at high salt content by phenotyping WT isolates



Strategy

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Salt content was reduced by 80 % while maintaining efficiency of hydrolysis

Identification of robust wild-type V. natriegens isolates

(based on 16S RNA sequence and physiological profile)

Number	Strain	Name	%ID
1	B01	V. alginolyticus	99.93%
2	4.1	V. alginolyticus	99.51%
3	6.3D	Photobacterium ganghwense	99.86%
4	B02	V. proteolyticus	99.51%
5	5.4	V. alginolyticus	99.73%
6	5.25	V. diabolycus	99.86%
7	VS3	V. alginolyticus	99.65%
8	10.2T	V. parahaemolyticus	99.79%
9	7.2	V. natriegens	99.86%
9	10.3	V. natriegens	99.58%
10	N5.2	Vibrio.sp (natriegens)	99.58%
11	N5.3	V. natriegens	99.67%

I. natriegens isolates have been identified

Phenotyping of wild-type *V. natriegens* isolates

		Growth rate µ (1/h)			
	<i>V. natriegens strains</i> (15 g/L NaCl, 30°C)	Glc	GlcN	GIcNAc	Chitin hydrolysate
	5.3	1.212	0.813	1.271	1.165
	10.3	1.202	0.535	0.935	0.822
	DSM 759	1.102	0.517	0.840	0.807

Growth characteristics of WT isolates on synthetic carbon sources and chitin hydrolysate

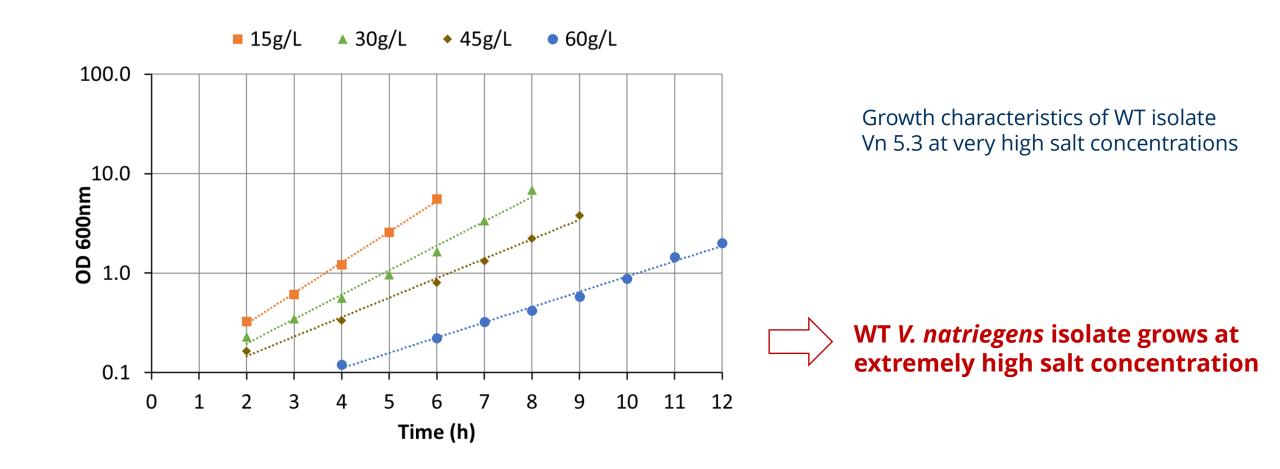
TRƯỜNG ĐẠI HỌC

HANOI UNIVERSITY

BÁCH KHOA HÀ NỘI

OF SCIENCE AND TECHNOLOGY

WT *V. natriegens* isolate 5.3 grows grows faster on chitin hydrolysate than sequenced reference strain



TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Phenotyping of wild-type V. natriegens isolates

Phenotyping of wild-type V. natriegens isolates

	μ (1/h)	
g/L	V. natriegens 10.3	V. natriegens 5.3
0	No growth	-
15	0.505	0.710
30	0.366	0.565
45	0.236	0.473
60	0.182	0.354

Comparison of WT *V. natriegens* isolates regarding growth at extremely high salt concentrations

\Box

WT V. natriegens isolate 5.3 grows at extremely high salt concentrations

TRƯỜNG ĐẠI HỌC

HANOI UNIVERSITY

BÁCH KHOA HÀ NỘI

OF SCIENCE AND TECHNOLOGY

Strategy

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

OBJECTIVE: Obtain fermentable chitin hydrolysate

Optimize hydrolysis:

High yield at 2 M NaCl

Identify robust strain:

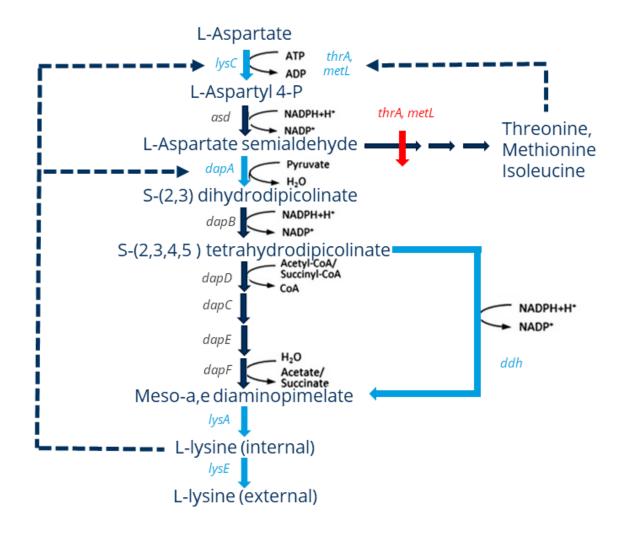
Robust growth at 1 M NaCl

Forthcoming:

- Enzymatic hydrolysis (avoids salt entirely)
- Desalting by chromatography (partially already successful)

Concept of ScampiLys

Optimization of shrimp waste hydrolysis methods

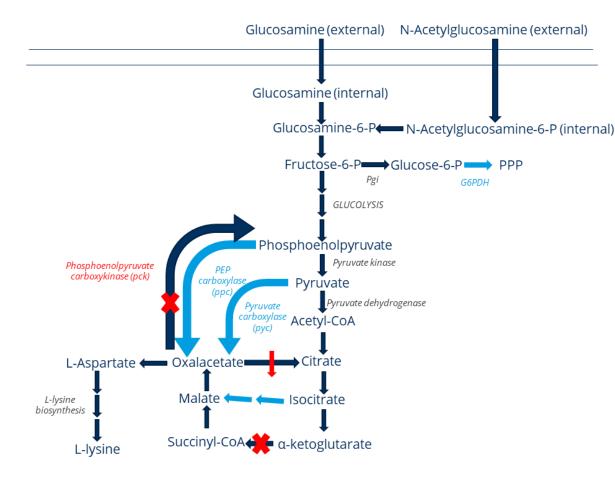

Metabolic engineering of a lysine-producing strain

Summary and additional project outcomes

Optimized design of lysine synthetic pathway

Lysine feedback inhibition on aspartate kinase (LysC) and tetrahydrodipicolinate synthase (DapA) must be removed

-> Enzyme engineering


Activity of key metabolic enzymes must be increased

-> Strain/Metabolic engineering

Allosteric feedback inhibition to remove

- Activity to increase
- Activity to decrease

Optimized design of lysine synthetic pathway

Lysine feedback inhibition on aspartate kinase (LysC) and tetrahydrodipicolinate synthase (DapA) must be removed

-> Enzyme engineering

Activity of key metabolic enzymes must be increased

-> Strain/Metabolic engineering

+--

Allosteric feedback inhibition to remove

- Activity to increase
- Activity to decrease

Workflow

Identification and engineering of lysine pathway enzymes in *V. natriegens*

(Protein alignments, site directed mutagenesis, enzyme production and characterization)

Strain engineering via plasmid-born expression of pathway genes

(Identification of plasmids, optimal enzyme activity via modulating strength of promoters and RBS sequences, deletion of competing reactions, cultivation experiments)

Lysine-producing strain with optimized carbon flux (yield) **suitable for lab-scale** investigations

Strain engineering via chromosomeborn expression of pathway enzymes

(Chromosomal integration of expression cassettes, adaptation of copy number)

Lysine-producing strain with high yield **suitable for large scale** applications

Expected results

Suitable pathway enzymes

Enzyme identification and engineering

Protein alignments (blastp) using *E. coli* aspartate kinases (Ec.LysC, Ec.MetL, Ec.ThrA) as template

-> Identification of 2 bi-functional aspartate kinases (with AK + HOM-DH activities)

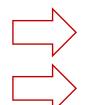
Vn.MetL Vn.ThrA

- Verify activity
- Possibly: reduce expression in producer strain

-> Identification of 3 potential mono-functional aspartate kinases

Vn.LysC1 Vn.LysC2 Vn.LysC3

- Verify and characterize activity
- E. coli contains only one mono-functional AK!!!

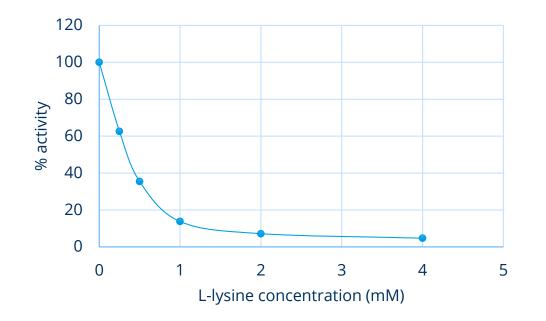

Enzyme identification and engineering

3 out of 5 V. natriegens candidate enzymes could be expressed and purified

Enzyme (AK)	Vmax (U/mg)	K ₀₅ (mM)	Hill coefficient
Ec.LysC	11,97 +- 1.65	17.11 +- 4.09	0.82 +- 0.13
Vn.LysC1	14,76 +- 2.74	11.06 +- 4.24	1.19 +- 0.44
Vn.LysC2	6.96 ± 0.3	9.01 ± 0.95	0.95 ± 0.04

Ec.lysC as control of the assay

Enzyme (AK-HD)	Vmax (U/mg)	K ₀₅ (mM)	Hill coefficient
Vn.ThrA	1.60 +- 0.23	20 +- 0	0.72 +- 0.02


Vn.AK enzymes successfully identified

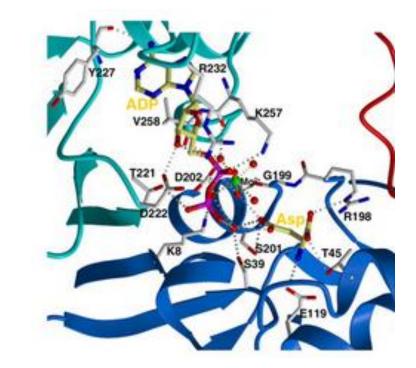
Vn contains at least one additional monofunctional AK – What for???

Enzyme identification and engineering

Lysine-sensitivity of Vn.LysC1

Vn.LysC1 is inhibited at physiological lysine concentrations

Enzyme identification and engineering

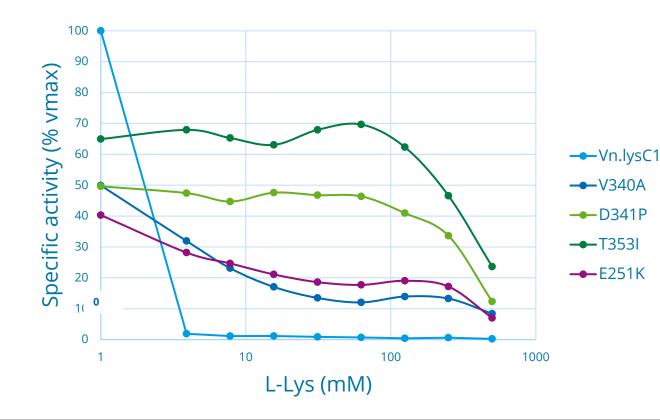

Vn_lysC3 Ec_lysC Vn_lysC1 Vn_lysC2 Cg_lysC Bs_lysC	MTFTVEKIGGTSMTAFDAVLDNIILRPKTPYNRVFVVSAYGGYTDALLECKKTSK -MSEIVVSKFGGTSVADFDAMNRSADIVLSDANVRLVVLSASAGITHLLVALAE -VSAFNVAKFGGTSVANFEAMSRCAAIIENNPNTRLVVSSACSGVTHLLVELAN VKKPLIVQKFGGTSVGSIERIHQVAEHIIKAKNDGNQVVVVVSAMGGETHRLMDLAK MALVVQKYGGSSLESAERIRNVAERIVATKKAGNDVVVVCSAMGDTTDELLELAA -MGLIVQKFGGTSVGSVEKIQNAANRAIAEKQKGHQVVVVVSAMGKSTDELVSLAK :***:::::::::::::::::::::::::::::::
Vn_lysC3	AGVYQLVAKRDDSWEEALAYVENRMLLTNENIFADPMNRMRADKFIRSRISEAKNCIANI
Ec_lysC	-GLEPGE-RFEKLDAIRNIQFAILERLRYPNVIREEIERLLENITVL
Vn_lysC1	-GVQDQEQRAELLRKLAEIHDDILSQLRDAAEASAEVYAILDTVTSL
Vn_lysC2	-QVDSVPTARELLL
Cg_lysC	-AVNPVPPAREMMMM
Bs_lysC	-AISDQPSKREMMMM
	: :
	\cap
Vn_lysC3	LETCQYGQFSLRHYLPQIREFLSSIGEAHSAYNTALKLKNMGINAKFVDLSGWDTT
Ec_lysC	AEAAALATSPALTDELVSHGELMSTLLFVEILRERDVQAQWFDVRKV-MRTN
Vn_lysC1	AEAASIQASSKLTDHLVACGELMSTHILAQLMRERGINAVRFDIRDV-LRTD
Vn_lysC2	RSLTGAQANIVTD
Cg_lysC	QSFTGSQAGVLTT
Bs_lysC	DMLLATGEDVTISLLSMALQEKGYDAVSYTGWQAGIRTE
	: * : ** : : * *
Ma 1	
Vn_lysC3	EPKSLDESISEAFADIDVSKELPIVTGY-AYCKEG-LMHTYORGYSENTFSR
Ec_lysC	DRFGRAEPDIAALAELAALQLLPRLNEG-LVITQGFIGSENKG-RTTTLGRGGSDYTAAL
Vn_lysC1	DNFGRAEPNVEAISQLAQEKLVPLCQES-VVITQGFIGSDEEG-NTTTLGRGGSDYSAAL
Vn_lysC2	NQHNDATIKHIDTTRVMALLEQEHVVIVAGFQGVNENG-DITTLGRGGSDT\$AVT
Cg_lysC	ERHGNARIVDVTPGRVREALDEGKICIVAGFQGVNKETRDVTTLGRGGSDT AVA
Bs_lysC	AIHGNARITDIDTSVLADQLEKGKIVIVAGFQGMTEDC-EITTLGRGGSDTAVA
	· · · · · · · · · · · · · · · · · · ·

Vn – Vibrio natriegens Ec – Escherichia coli Cg – Corynebacterium glutamicum Bs – Bacillus subtilis

Active site residues

Experimentally verified active site residues in Ec.LysC:

T45 E119 RGGS 198-201



Candidate positions to alleviate lysine feedback inhibition

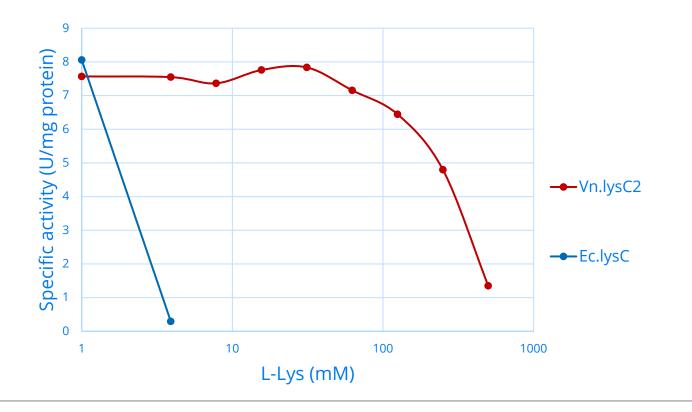
Ec.LysC (Literature)	Vn.LysC1 (Homologous residue)
E250K (Kikuchi et al. 1999)	E251K
V339A (Chen et al. 2011)	V340A
D340P	D341P
T352l (Kikuchi et al. 1999)	T353I

Enzyme identification and engineering

Engineering of Vn.LysC1

All mutants escape lysine feedback inhibition

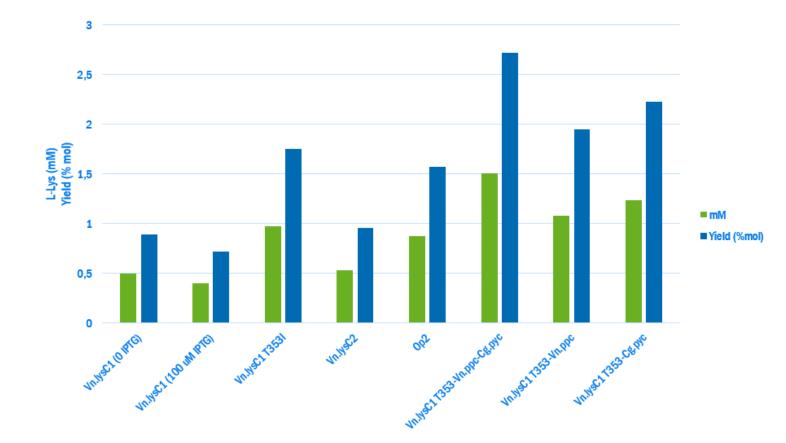
Vn.lysC1 T353I is lysine resitant and retains highest activity

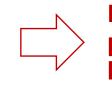

Use Vn.LysC1 T353I variant for metabolic engineering

Enzyme identification and engineering

Properties of Vn.LysC2

Vn.LysC2 is not subject to lysine feedback inhibition


Strain engineering


Constructed strains express AK variants and anaplerotic enzymes

Vector	Genes on plasmids
pTrc99A	wt enzyme as reference Vn.lysC1 -> no expression of enzyme
pSB-MC	wt enzymes as reference Vn.lysC1 -> successful expression verified by enzymatic assay Vn.lysC2
	Mutant AK enzymes with candidate anaplerotic enzymes Vn.lysC1 T353I Vn.lysC1 T353I-Vn.ppc-Cg.pyc Vn.lysC1 T353I-Vn.ppc Vn.lysC1 T353I-Cg.pyc
	Mutant AK enzymes with anaplerotic and lysine pathway enzymes Vn.lysC1 T353I-Vn.dapA-Vn-lysA-Vn.lysE-Cg.ddh (Operon 1, not yet obtained) Vn.lysC2-Vn.dapA-Vn-lysA-Vn.lysE-Cg.ddh (Operon 2)

Strain engineering

Effect of overexpressing lysine pathway genes (shake flask experiments)

Expression of engineered pathway enzyme increases lysine production

Lysine accumulation is still comparatively small

Optimize medium to impose growth arrest

Co-express other feedback-resistant lysine pathway enzymes (DapA)

Concept of ScampiLys

Optimization of shrimp waste hydrolysis methods

Metabolic engineering of a lysine-producing strain

Summary and additional project outcomes

Summary

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY Optimization of hydrolysis conditions has reduced salt content by 80 % while largely maintaining efficiency

Chromatography further reduces salt content

Wild-type *V. natriegens* isolate shows increased salt tolerance and better assimilation rates for chitin monomers

Aspartate kinases have been identified in *V. natriegens* and were rendered lysine-resistant by enzyme engineering

Suitable plasmid for metabolic engineering of V. natriegens has been identified

Overexpression of lysine-resistant aspartate kinase and anaplerotic enzymes results in increased lysine production

Lysine yields are still very small -> further engineering steps are straightforward

Additional project outcomes

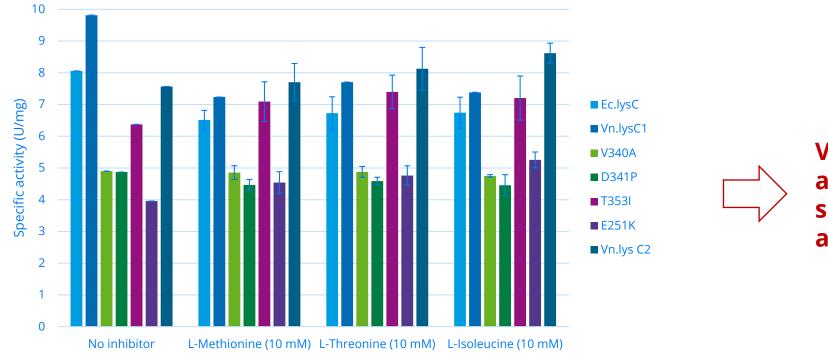
Internships of Vietnamese students at INT (2 Bachelor and 1 Master student, each for 3 months)

Online course in Systems Biotechnology (fall 2021) for students from HUST

Under discussion: Integration of specific biotech courses into new ELITECH program at HUST

Plenty of ideas how to continue the collaboration

Thanks for your attention Cảm ơn đã quan tâm Danke für Ihre Aufmerksamkeit


BackUp slights

Enzyme identification and engineering

Sensitivity of Vn.LysC wild-type and mutant enzymes to other amino acids

Vn.LysC1 mutant enzymes and Vn.LysC2 are not sensitve to other relevant amino acids

Strain engineering - Verification of protein expression from different plasmids

Ctr Ctrl Vn.lysC1 6h Vn.lysC1 6h 10 100 1000 24h 6h 0 10 100 1000 0

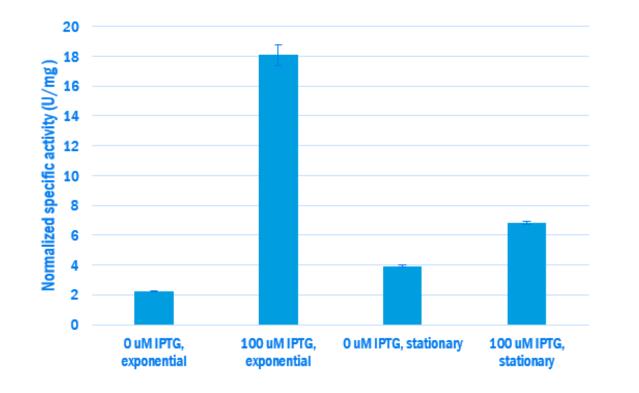
C05 No notable SDS-PAGE gel band at 45 Kda

Enzymatic assay of AK activity (NADH consumption based) shows no activity on 24h crude extract

-Not even native NADH consumtion?

Induction conditions in *V. natriegens* could not be confirmed

Vn.LysC1 cannot be expressed from pTRC99 plasmid



50 KDa 40 KDa

Strain engineering – Verification of protein expression from different plasmids

Expression of Vn.LysC1 from pSB-MC plasmid

AK enzymatic assay on crude protein extract:

- AK activity is confirmed to be increased
- Expression of Vn.lysC1 is efficient at exponential phase and still present after 24h culture
- WT *V. natriegens* crude extract should be also assayed to separate background from leaky expression (0 IPTG)

Strain engineering – Plasmids tested for metabolic engineering

Vector	Insert	Transformed	Comment	
pACYC184	-	Yes	Stable and easy to transform. Used as control for transformation efficiency	
pZS	-	No	Transformation did not yield any cells after several attempts	
pZA	-	No	Transformation did not yield any cells after several attempts	
pZE	-	No	Transformation did not yield any cells after several attempts	
рАСТ3	-	Yes	Low efficiency of transformation. Transformed cells showed a growth defect phenotype	
	Ec.lysC E250K		Not transformed into V. natriegens	
pTrc99a	-	Yes	Low efficiency of transformation. Transformed cells showed a small growth defect phenotype	
	Vn.lysC1	Yes	No expression of Vn.lysC1 detectable by SDS gel and enzymatic assay	
	Vn.lysC1 V340A	Yes	No change in metabolism in V. natriegens after induction in minimal media	
	Vn.lysC1 D341P	Yes	No change in metabolism in V. natriegens after induction in minimal media	
	Vn.lysC1 T353I	Yes	No change in metabolism in V. natriegens after induction in minimal media	
	Vn.lysC1 E251K	No	Could not be transformed in V. natriegens after several attempts	
pSB-MC	-	Yes	Severe growth defect on minimal media	
pSB-HC	-	Yes	Severe growth defect on minimal media after induction unless using reduced concentration of IPTG	
pSB-MC	-	Yes	Transformation was efficient, and not growth defect was observed	
	Vn.lysC1	Yes	High expression of Vn.lysC1 was confirmed by enzymatic assay on crude extract.	
	Vn.lysC1 T353I	Yes	Testing culture conditions for optimal Lys production	
	Vn.lysC2	Yes	Testing culture conditions for optimal Lys production	
	Vn.lysC1 T353I-Vn.dapA-	No	plasmid not yet obtained	
	Vn.lysC2-Vn.dapA-Vn.lys	Yes	Testing culture conditions for optimal Lys production	
	Vn.lysC1 T353I-Vn.ppc	Yes	Testing culture conditions for optimal Lys production pSB-MC plasmid was suita	
	Vn.lysC1 T353I-Cg.pyc	Yes	Testing culture conditions for optimal Lys production	
	Vn.lysC1 T353I-Vn.ppc-C	Yes	Testing culture conditions for optimal Lys production	